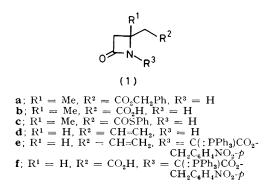
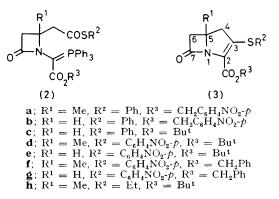
Intramolecular Wittig Reactions with Thioesters: the Synthesis of 7-Oxo-3-phenylthio-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylates


By ROGER J. PONSFORD, PATRICIA M. ROBERTS, and ROBERT SOUTHGATE*

(Beecham Pharmaceuticals, Research Division, Brockham Park, Betchworth, Surrey RH3 7AJ)


Summary 4-Carboxymethylazetidin-2-ones have been converted into phenylthioesters and then into the 7-oxo-3phenylthio-1-azabicyclo[3.2.0]hept-2-ene ring system via an intramolecular Wittig reaction.

THE intramolecular reaction of a stabilised phosphorane with an aldehyde or ketone has been widely used to prepare cephalosporins,¹ oxadethiacephems,² the olivanic acid ring system,³ and thienamycin analogues.⁴ Interaction with the carbonyl group of 4-acylthioazetidin-2-ones derived from phenoxymethylpenicillin gives the penem ring structure.⁵ We now report an internal Wittig cyclisation with thioesters which leads to the 7-oxo-1-azabicyclo-[3.2.0]hept-2-ene ring system having a phenyl sulphide substituent at the C(3) position of the nucleus.

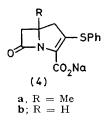
Initially we chose to use as our starting β -lactam 4methyl-4-carboxymethylazetidin-2-one (1b), obtained by hydrogenolysis of the corresponding ester (1a).[†] The latter was readily prepared from benzyl 3-methylbut-3-enoate and chlorosulphonyl isocyanate by the method of Graf.⁶

The acid (1b) was converted $[(EtO)_2POCI-Et_3N-PhS-Tl]^7$ into the thioester (1c)[†] (70%), m.p. 103—104 °C, which with p-nitrobenzyl glyoxylate followed by the established procedure¹⁻⁵ gave the phosphorane (2a),[†] m.p. 184—185 °C. When (2a) was heated in toluene[‡] under reflux for 3 days a 53% yield of the bicyclic compound (3a),[†] m.p. 142—146 °C, was isolated after chromatography on florisil. The product showed§ a u.v. absorption maximum at 318 nm (ϵ 17,000) and a β -lactam carbonyl i.r. absorption at 1780 cm⁻¹ characteristic of the natural olivanic acid derivatives.⁸

Subsequently, we used this procedure to prepare the corresponding 1-azabicycloheptene (**3b**) lacking the C(5) methyl group. 4-Allylazetidin-2-one (**1d**)³ was converted into the phosphorane (**1e**), \dagger m.p. 182—183 °C, and then subjected to ozonolysis (CH₂Cl₂-CF₃CO₂H, -70 °C) followed by oxidation with *m*-chloroperbenzoic acid (room temperature). Chromatography on silica gave the acid¶ (**1f**) \dagger

† Satisfactory microanalyses and/or accurate mass data were obtained.

[‡] Cyclisations were conducted at a concentration of 1 mg ml⁻¹ under argon.


 $\$ The other bicyclic compounds described also showed these spectral characteristics; further characterisation was by n.m.r. and mass spectrometry. For the characteristic i.r. and u.v. absorptions of natural olivanic acid derivatives see ref. 8.

 \P Residual traces of trifluoroacetic acid (TFA) which caused some protonation of the phosphorane could be removed by stirring for a brief period with basic alumina in dichloromethane.

(69%), m.p. 127-133 °C, which was readily converted via the mixed phosphonic anhydride into the thioester (2b)[†] (70%), m.p. 186-188 °C. This phosphorane was heated in refluxing toluene for 24 h to give an 18% yield of (3b),† m.p. 112-114 °C. More prolonged heating led to a greater degree of decomposition, and in general cyclisations producing products possessing the C(5) methyl group could be subjected to longer reaction times.

Other examples** showed the influence of both the thioester and phosphorane ester on the ease of cyclisation; in addition the sensitive nature of some thiol substituents to the reaction conditions was also revealed. Thus, using the phosphorane t-butyl ester (2c) gave a 39% yield of the S-phenyl derivative (3c) after only 6 h. With the highly activating p-nitrophenyl group the thioester (2d) gave 54% of (3d),† m.p. 129-131 °C, after 5 h. In contrast, reaction of (2e)[†] showed extensive degradation after only 15 min, although a small yield (7%) of (3e) was isolated. Similarly with the benzyl ester (2f) † a 61% yield of (3f) † was obtained after 10 h, while cyclisation of (2g) † had to be stopped after 1.5 h giving 7% of (3g), † m.p. 126-131 °C. Interestingly with the ethylthioester (2h),† (3 days at reflux) the ethyl derivative $(3h)^{\dagger}$ (32%) was

obtained, whereas under identical conditions no product could be detected in the series lacking the methyl substituent.

Removal of the acid protecting groups from (3a) and (3b) (H₂-Pd-C-aqueous dioxan) allowed the isolation of the corresponding sodium salts (4a) and (4b), λ_{max} (H₂O) 300 nm, ν_{max} (KBr)⁸ 1750 cm⁻¹, with (4b) being somewhat more labile. Antibacterial in vitro tests revealed that (4b) showed considerable activity against a number of Gram positive and Gram negative organisms, while (4a) was only weakly active.

(Received, 15th June 1979; Com. 630.)

** Other examples were prepared by essentially the same methods as described for (2a) or (2b) by incorporation of the appropriate thiol and/or glyoxylate ester.

¹ R. Scartazzini, H. Peter, H. Bickel, K. Heusler, and R. B. Woodward, Helv. Chim. Acta, 1972, 55, 408; J. H. C. Nayler, N. F. Osborne, M. J. Pearson, and R. Southgate, J.C.S. Perkin I, 1976, 1615; D. Bormann, Annalen, 1974, 1391.
²C. L. Branch, J. H. C. Nayler, and M. J. Pearson, J.C.S. Perkin I, 1978, 1450.
³A. J. G. Baxter, K. H. Dickinson, P. M. Roberts, T. C. Smale, and R. Southgate, J.C.S. Chem. Comm., 1979, 236.

 ⁴ L. D. Cama and B. G. Christensen, J. Amer. Chem. Soc., 1978, 100, 8006.
⁵ I. Ernest, J. Gosteli, C. W. Greengrass, W. Holick, D. E. Jackmann, H. R. Pfaendler, and R. B. Woodward, J. Amer. Chem. Soc., 1978, 100, 8214.

R. Graf, Annalen, 1963, 661, 111.

 ¹ S. Masamune, S. Kamata, J. Daikur, Y. Sugihara, and G. S. Bates, *Canad. J. Chem.*, 1975, 53, 3693.
⁸ B.P. 1,531,141; A. G. Brown, D. F. Corbett, A. J. Eglington, and T. T. Howarth, *J.C.S. Chem. Comm.*, 1977, 523; D. F. Corbett, A. J. Eglington, and T. T. Howarth, ibid., p. 953.